Tulane makes major AIDS breakthrough

A team of Tulane University Medical Scientist has developed a prototype for an AIDS vaccine, proven effective after more than a year of testing on rhesus monkeys. SIV not only stimulates an immune response to the SIV infection in rhesus monkeys, but it is the closest known corollary to the human immunodeficiency virus (HIV). The rationale behind the research, says Dr. Michael Murphy-Corb, is that a vaccine proven effective at protecting monkeys from SIV infection would be an IDV model for a vaccine to protect humans from HIV infection.

The investigative team includes Dr. Murphy-Corb, Louis Martin, PhD, senior research scientist; Dilie Davison-Fairburn, DVM, clinical veterinarian; and Gary Baskin, DVM, senior veterinarian, from the Delta Primate Research Center and Ronald C. Montelaro, PhD, a biochemist with the College of Basic Sciences at LSU in Baton Rouge.

In 1987, using a method that had previously been successful in the past with other viral vaccines such as polio, the scientists purified live SIV from infected monkeys and "killed" it by treating it with a combination of formaldehyde and water, which chemically joins proteins together.

In 1987, the scientists injected the vaccine into rhesus monkeys. Thirteen months after a series of three vaccinations, live SIV was injected into the monkeys. The 13-month waiting period allowed a maximum manifestation of the monkeys' immune systems.

Of the nine monkeys, eight showed no signs of infection. The ninth, while having shown evidence of being SIV-positive, has yet to develop any SIV-related symptoms. This ninth monkey is significant, says Dr. Murphy-Corb, because unvaccinated monkeys exposed to SIV usually die within seven months. Now, after more than 14 months since it was injected with the live virus, the ninth monkey is still healthy.

The team of investigators began tracking the origin and disease-causing traits of the monkey virus in 1985. Dr. Murphy-Corb says she and her colleagues are "pleased" with the "success and efficiency" of the rhesus-monkey model for AIDS vaccine research.

"The true elegance of this model is that not only infects rhesus monkeys but also causes a disease very similar to human AIDS," she explained. Research with these monkeys permits the scientists to validate their research protocols before testing in clinical trials.

The development of a vaccine suitable for human trials will require more experiments in monkeys, says the scientists. "A whole virus vaccine could be risky in terms of humans because you have to have confidence that there is absolutely no infectious virus left," says Dr. Montelaro.

"The major significance of this study is that we have laid a cornerstone for the foundation of an AIDS vaccine for humans," she says.

John R. Reedy

Cypress names new administrator

Cypress Hospital has announced appointment of John R. Reedy as administrator of the 116-bed psychiatric and chemical dependency treatment facility here. Reedy replaces Patrick Waugh, who was promoted within the HCA system.

Reedy came to Lafayette from Colombia, S.C., where he was administrator at Charter Rivers Hospital. Prior to joining Rivers in 1984 he held various health care management positions, including assistant director of facilities planning and development, assistant administrator, and administrator.

Reedy received his master's degree in business administration from Mississippi State University, and his BA in personnel management from the University of Southern Mississippi.

His professional memberships include American Hospital Association, Louisiana Hospital Association, Fellow of the American College of Healthcare Executives, and Quarter Century Executive Forum. He is past chairman of the Mississippi Hospital Association, and has held many committee and board assignments in the health care field and in civic organizations.