Digging for answers

Romantic interest in archaeology becomes reality at field school

Stories by Sarah Sue, Goldsmith, associate editor
Photos by Patrick Dennis, Advocate staff

The pickup truck bumps along a gravel road, turning onto a dirt road, a swirl of dust following it. Its occupants sit in the back on ice chests and boxes of equipment. As they bounce between the cultivated fields, the dust slides above the horizon, a shimmering orange-red.

Farmers and archaeologists slide out before dawn to start their work done before the intense heat of the Louisiana summer. The group with Ann Ramenofsky's LSU summer field school is riding near its archaeological site in the middle of a soybean field that stretches as far as the eye can see. It's in Catahoula Parish, 30 miles from Jonesville (formerly Troyville) on Louisiana State Highway 6.

These people are not only dedicated to their work but also tough. They are excavating dwelling sites, not buried. Sensationalism is not their goal. They want to learn all they can about the people who lived centuries ago in an area north of Marksville. Handling objects made and used by people so long ago becomes their passion, making them seem like human beings.

Project director Ann Ramenofsky points out a feature to assistant Kathy Joiner. Top left, decorated pottery shards.

The other project assistant is Kathy Joiner, a graduate student in physical geography at LSU, whose specialty is soils and sediments. "We have 10 to 12 people working here on a regular basis," she said. "We're seeing people picking up everything - dog wrappers, cigarette packets, as well as projectile points and shards." Joiner, a research associate at LSU, is working on her doctorate at the University of Washington in Seattle. "When farmers are plowing and digging, a certain amount of artifacts gets churned up," she added. Things found on the surface - while interesting to date out of context. Carbon deposits are needed to date artifacts accurately.

"It makes more sense for them to have lived near a lake than by a river."

Carbon deposits are needed to date artifacts accurately.

"Glunk is fired clay, probably used in cooking areas. But there's also glunk from natural fires. We have to figure out which is natural and which is manmade."

"Glunk is fired clay, probably used in cooking areas. But there's also glunk from natural fires. We have to figure out which is natural and which is manmade."

Plant materials tend to be difficult to find in the soil of the pits. The team uses sieves of soil in buckets of water and baking soda (100 lbs. was used this summer) then dumps the chocolate-mousse-looking mess into a barrel through which water is shot at high pressure. Heavy items go to the bottom, the soil washes out, and light things are caught in the nylon organy on top. They call this a flotation device.

This summer's work marks the first time archaeologists at a Louisiana site have used water screening and flotation, Ramenofsky said. As a result, they are finding small objects like seeds and beads which can be seen only when the clay has been separated from them.

Operating the flotation device is Marcia Sundell, a graduate student in anthropology who has studied the pottery of early cultures. And everyone stops what he's doing and goes down to the lab to see the new features.

Miguel Espinoza's pit reveals the first line of post molds. Espinoza, a student from Costa Rica who has worked on archaeological sites in his country and who plans to be an archaeologist, wears a sweat band around his forehead, denim overalls and no jacket.
Clockwise from top left, arrowheads dating from 3000 BC to 1400 AD, Ramenofsky shows levels of occupation in excavation pit, Carey Coxe uses a surveyor's level to determine distance and elevation, Miguel Espinoza holds metric stadia rod.

"When we get a heavy rain, the pits fill up like swimming pools."

(Continued from Page 15)

The project director, fell and was believed to have broken her leg. It turned out to be a bad sprain and torn ligaments, so her leg is in a cast — first a short cast, a week later — one up to her knee. She spends the days immediately following the injury with the offending foot propped up on a bucket, tablet in hand, recording data.

Each pit (10 total but only four or five being excavated at one time) is manned by two students who use trowels to scrape carefully across the surface and remove the dirt to large buckets. A whisk broom is used to clean loose dirt from any interesting "feature." A feature might be an object or unexplained marks in soil. Each feature is recorded and a surveyor's instrument used to site its exact position. "Once you pick it up you can't put it back, so it's better to record everything and then get rid of things we don't need — like gravel," Whitmer said.

The buckets of artifact-laden soil are labeled as to pit location, and the contents are dumped onto a water-screening table. This is the rewarding task of the day — a chance to work in close proximity to cool water.

The top screen has a large mesh, the lower screen mesh is smaller so that artifacts that fall through the top screen are caught in the lower one. The worker uses a hose with a spray nozzle to wash through all the soil.

Artifacts in each pit are separated from soil by the water, dried and later sorted and studied.

There are the lucky people who periodically hold up lovely pieces of wet, gleaming orange chert, obviously worked by hand centuries ago, perhaps the discarded pieces of arrowheads — and fragments of decorated pots, the lines and their patterns quickly identifiable as Troyville, Coles Creek or Plaquemine to the practiced eye.

In about five minutes water screen workers look like canvases for spatter painting with mud. Add a little honest sweat, and everyone becomes a nice, even shade of clay. These folks helpfully hose down comrades from time to time. Nobody objects.

There is something worse than heat to archaeologists: floods. "When we get a heavy rain, the pits fill up like swimming pools," Ramenofsky said. "The clay at the bottom of the site holds the water, so we have to pump it out." At the end of the eight-week field school, all of the pits will be refilled with soil to prevent accidents and to protect the site from vandalism.

Red-haired Becky Asente, a graduate student in anthropology, prepares to face the day by donning a huge coolie hat over braided hair and works at water screening before moving to one of the pits.

Potsherds, projectile points, bird, fish and mammal bones and charcoal are turned up in the pits and at the water...
"Glunk is fired clay, probably used in cooking areas. But there's also glunk from natural fires... We have to figure out which is natural and which is manmade."

Plant materials tend to be difficult to find in the soil of the pits. The team soaks globs of soil in buckets of water and baking soda (100 lbs. was used this summer) then dumps the chocolate-mousse-looking mess into a barrel through which water is shot at high pressure. Heavy items go to the bottom, the soil washes out, and light things are caught in the nylon organdy tray on top. They call this a flotation device.

This summer's work marks the first time archaeologists at a Louisiana site have used water screening and flotation, Ramenofsky said. As a result, they are finding small objects like seeds and beads which can be seen only when the clay has been separated from them.

Operating the flotation device is Marie Standifer, a graduate student in anthropology whose interest in plants of early era has led her to study the archaeology of plants. Any plant materials collected will be studied by research specialist Gail Fritz at her lab of anthropology, University of Michigan.

Especially exciting to the archaeologists are features called post molds - indications of Indian dwellings. Black spots in the brown soil form patterns. After the posts fall apart, staining the dirt with charcoal, the hole is filled with dirt from above. That's a charcoal deposit. "If the post molds are large, they were probably supports for the daub and wattle buts the Indians lived in. If they are small, they were probably drying racks for fish, clothes, hanging pots, meat or whatever," she explained.

The Indians would have put up the posts first, then would have woven grasses and patted clay over the whole structure. Fires burned the clay. "You can see the imprint of the grasses on the clay," Whitmer said. Whenever new post molds are found, everyone stops what he's doing and goes to see the new features.

Miguel Espinoza's pit reveals the first line of post molds. Espinoza, a student from Costa Rica who has worked on archaeological sites in his country and who plans to be an archaeologist, wears a sweat band around his forehead, designer sunglasses and no shirt.

(Continued from Page 17)

(Continued from Page 19)
"You can see the imprint of the grasses on the clay."

(Continued from Page 16)

"I've learned so much working with Ann," he said, "especially the different techniques used here," he said. He and his partner, Becky Asente, are digging at level 5. Each level is 10 centimeters deep (four inches).

"Now, Miguel," said Ramenofsky, "why don't you scrape the soil from the front side of that post mold so we can see it more clearly?"

"Yes, my lady," the student quipped. From the hilarity and comments following his reply, it is apparent that his Old World response professes a certain amount of deference (besides being tongue-in-cheek) on the project director.

A field or two away from the excavation site lies the Cowpens Slough burial ground, dated to 5,000 years ago. The burials were exposed when a drainage canal was cut through the farm and were studied by Ramenofsky in 1984. The burials do not appear to be related to the era of the village site being excavated, Ramenofsky said.

The excavation pits show three levels of occupation: modern farming has plowed the level known as Plaquemine, near the historic border (1,500 A.D.); Cole's Creek preceded Plaquemines (800-1,200 A.D.); Troyville (300-800 A.D.) is the earliest on the site — essentially two villages, one on top of another.

Pits are started without any notion of what they might reveal; consequently some turn out to be disappointments. Some are sleepers, revealing their pieces of prehistoric puzzle just as everyone has given up hope of finding anything.

Ricky Mitchell is at the lowest level (90 centimeters or 36 inches), practically featureless — except for a large carbon deposit in a pit in one corner. Charcoal from this pit will be dated and provide the earliest date of use by a native population, Ramenofsky said. Mysteries keep an archaeologist's life scintillating.

Mitchell is an undergraduate in anthropology. His skills from working as a carpenter for seven years have come in handy on this project. He built the plywood dining trestle tables and makes repairs quickly when needed.

Younger undergraduate students in anthropology working at excavating pits are Dana Coury and Carey Coxe. Ben Bryant, a beginning graduate student in anthropology, thin and scholarly looking, has a drama background. Janet Shoemaker has an M.A. in anthropology. Her graduate work focused on native language use of Ebarb, near Toledo Bend.

Beverly Wilson, a graduate student in art education, said she has always wanted to work at an archaeological site, so this summer's excavation is the fulfillment of a dream.

In fact — judging by the team's good-natured acceptance of relentless heat, long hours of hard work in the field and in the lab and the noticeable absence of petty disagreements — working at this Louisiana Indian site is either the fulfillment of a dream or the beginning of a life-long commitment to studying the people of the past.