Small, dark-brown sclerotia of the sheath blight pathogen survive between crops on straw and in the soil. These sclerotia float in the flood water, come in contact with rice tillers, and infect plants at or near the water line. Typical lesions have cream-colored centers and broad, dark reddish-brown borders. The disease progresses up the plants, forming a snakeskin type of banding pattern on the stem and leaf surfaces. Disease development is favored by thick stands above 20 plants/sq. ft. and excessive nitrogen fertilization levels beyond that needed for optimum yield. The disease spreads from plant to plant outward through the field, causing circular areas of dead and collapsing rice plants. The disease develops rapidly at the boot and heading stages. During the late tillering or early jointing stages, check plants in at least 10 different areas in each field for sheath blight lesions. If more than 5-10% of the tillers of a susceptible variety or 10-15% of a moderately susceptible variety have lesions, use a foliar fungicide. Medium-grain varieties are more resistant than long-grain varieties. Check with your parish agent for additional information.
Blast of Rice

The blast fungus overwinters in rice straw, stubble and on seeds. The disease spreads rapidly in the field by means of airborne spores. In the vegetative stage, elongated, spindle-shaped lesions with brown borders appear on the leaves. Severe infestations can lead to large areas of dead plants. Leaf blast development is usually associated with the loss of flood water or prolonged delay of flooding. Excessive nitrogen levels may also increase disease severity. Correct water management and application of a foliar fungicide are two control methods. After heading, brownish lesions can develop on the node at the base of the head, causing sterile florets or "blasting," followed by breaking over of the head to produce the rotten neck symptom. Symptoms can also occur on the nodes of the stem and at the base of the flag leaf. Preventive fungicide sprays at boot and heading can suppress rotten neck symptoms. Varieties differ in their levels of resistance, and selecting a resistant variety is the most important control method. Check with your parish agent for additional information.

Brown Leaf Spot of Rice

The brown spot fungus can be seedborne but can also survive year to year on infected rice straw or stubble. It is spread by airborne spores. The disease is characterized by a circular to slightly elongate reddish-brown lesion on the leaf, often with a halo around it, as well as by grain lesions. Grain lesions may be associated with rice stink bug feeding. Leaf symptoms are associated with poor growing conditions, including low fertility and other stressful cultural practices. Lesions on the foliage can occur from the seedling stage until maturity. Under severe disease conditions, mature spots have gray or necrotic centers. Most varieties grown today have some resistance. However, the major control practice is maintaining good growing conditions and using seed protectant fungicides.
Stem Rot of Rice

Small, black, pin-head size fungal sclerotia survive in rice straw and in the soil. Sclerotia float in the flood water, attach to the plant, germinate and cause infection. Black angular lesions with yellowish borders develop on the leaf sheath near the water surface. The infection progresses into the stem and may lead to breaking or collapse of the stem, causing lodging. Sclerotia develop inside the leaf sheaths and stems before plant maturity. After plant maturity, large numbers of sclerotia form in the straw, helping to reinfect the soil. Stem rot is most severe under low potassium levels. Use of a foliar fungicide may be justified. Fluctuating water levels help to control this disease.

D. E. Groth, Assistant Professor (Pathology), Rice Research Station, LAES
C. A. Hollier, Associate Specialist (Pathology), LCES
M. C. Rush, Professor (Pathology), LSU Dept. of Plant Pathology and Crop Physiology
Louisiana State University Agricultural Center, H. Rouse Caffey, Chancellor
Louisiana Cooperative Extension Service, Denver T. Loupe, Vice-Chancellor and Director

Pub. 2324 (3M) 3/87
Louisiana Agricultural Experiment Station, C. Oran Little, Vice-Chancellor and Director